Diabet kasalligini erta aniqlashda genetik testlarning roli

Authors

  • Go‘zaloy Saxibova Andijon davlat tibbiyot instituti, Ijtimoiy gigiyena va sog‘liqni saqlashni boshqarish kafedrasi assistenti Author
  • Muattar Umurzakova Andijon davlat tibbiyot instituti, Ijtimoiy gigiyena va sog‘liqni saqlashni boshqarish kafedrasi assistenti Author
  • Shoiraxon Hasanova Andijon davlat tibbiyot instituti, Ijtimoiy gigiyena va sog‘liqni saqlashni boshqarish kafedrasi katta o‘qituvchisi Author

Abstract

: Ushbu maqolada 2-tip diabet kasalligini erta bosqichda aniqlashda genetik testlarning ahamiyati, ilmiy asoslari va amaliy qo‘llanilishi chuqur tahlil qilinadi. Tadqiqot doirasida TCF7L2, SLC30A8, PPARG, KCNJ11 kabi asosiy genlarning polimorfizmlari bilan diabet rivojlanishi o‘rtasidagi bog‘liqlik ko‘rib chiqildi. Shuningdek, DNK metilatsiyasi, mikroRNKlar va histon modifikatsiyalari kabi epigenetik omillar kasallik patogenezidagi roliga e’tibor qaratildi. Sun’iy intellekt va mashina o‘rganish algoritmlaridan foydalanib, genetik ma’lumotlarga asoslangan xavf baholashning aniqlik darajasi tahlil qilindi. O‘zbekiston sharoitida milliy genetik testlash tizimini yaratish, biobanklar tuzish, sog‘liqni saqlash siyosatiga integratsiya qilish va aholining genetik savodxonligini oshirish bo‘yicha takliflar ishlab chiqildi. Maqola OAK ilmiy maqola yozish talablari asosida IMRAD tuzilmasida yozilgan.

References

Grant, S.F.A. et al. (2006). Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nature Genetics.

Sladek, R. et al. (2007). A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature.

Lyssenko, V. et al. (2008). Genetic variation in the SLC30A8 gene and future risk of type 2 diabetes. Diabetologia.

Mahajan, A. et al. (2018). Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility. Nature Genetics.

Wang, J. et al. (2019). Epigenetic mechanisms in the pathogenesis of type 2 diabetes. Journal of Diabetes Research.

Liu, Y. et al. (2022). DNA methylation and type 2 diabetes risk. BMC Genomics.

Hosseini, M. et al. (2021). Machine learning models for prediction of type 2 diabetes. Scientific Reports.

Ko, C.Y. et al. (2020). Deep learning applications in the genomics of diabetes. Computational Biology and Chemistry.

Stefánsson, K. et al. (2016). The genetics of diabetes: from candidate gene studies to GWAS and beyond. Nature Reviews Genetics.

Franks, P.W. et al. (2013). Epigenetics, DNA methylation, and metabolic diseases. Journal of Internal Medicine.

Muminova, N., Qodirova, G., Tillaboyeva, F., Abdullayeva, N., & Turaxodjayeva, M. (2025). RUS TILI DARSLARINI TASHKIL ETISHDAGI MUAMMO VA KAMCHILIKLAR: SAMARALI TIL O ‘RGATISH YO ‘LIDAGI TO ‘SIQLARNI BARTARAF ETISH. Empowerment of youth intellectual success (EYIS), 2(3), 17-20.

Muminova, N., Qodirova, G., Tillaboyeva, F., Abdullayeva, N., & Turaxodjayeva, M. (2025). INGLIZ TILI DARSLARINI O ‘QITISHDA INTERFAOL USULLARNING SAMARADORLIGI. Empowerment of youth intellectual success (EYIS), 2(3), 8-11.

Downloads

Published

2025-04-07